当前位置:首页 > 安卓源码 > 技术博客 >

Android开发浅谈附近地点搜索

时间:2016-12-26 17:42 来源:互联网 作者:源码搜藏 浏览: 收藏 挑错 推荐 打印

随着移动端的普及,很多 App应用 都有 LBS 功能。 附近的银行、 附近的饭店、 附近的超市、 附近的厕所、 ... 以上的需求很类似,实现的原理也大致相同。 定位方式有哪些? 基于 GPS 基于运营商基站 基于WiFi 基于蓝牙 基于传感器 我们主要应用基于 GPS 进行

随着移动端的普及,很多 App应用 都有 LBS 功能。

附近的银行、

附近的饭店、

附近的超市、

附近的厕所、

...

以上的需求很类似,实现的原理也大致相同。

定位方式有哪些?

  • 基于 GPS

  • 基于运营商基站

  • 基于WiFi

  • 基于蓝牙

  • 基于传感器

我们主要应用基于 GPS 进行定位。

其他定位方式,大家可以 Google 了解下。

实现原理

以获取附近的饭店为例子。

数据采集:

首先将饭店数据(经纬度和其他信息)存储到数据库中。

附近算法:

用户将自己的坐标传给服务端,服务端通过用户当前坐标,查询出附近的饭店。

接下来,我们就主要聊聊如何通过坐标查询出附近饭店的算法?

当当当当,GeoHash 闪亮登场。

GeoHash 算法

GeoHash 算法 是一种地址编码,它能把二维的经纬度编码成一维的字符串。

重点:经纬度坐标为GPS坐标。

优点:

  • 利用一个字段表示经纬度,给字段加上索引,效率高。

  • 编码的前缀可以表示更大的区域,查找附近的,非常方便。

  • 编码暴露,也不会暴露自己的精确坐标,有助于隐私保护。

算法:

以 经纬度 (39.92324,116.3906) 为例进行分析。

首先将纬度范围 (-90, 90) 平分成两个区间 (-90,0)、(0, 90)。

如果目标纬度位于前一个区间,则编码为0,否则编码为1。

由于 39.92324 属于 (0, 90),所以取编码为1。

然后再将 (0, 90) 分成 (0, 45), (45, 90)两个区间。

然而 39.92324 位于 (0, 45),所以编码为 0。

以此类推,直到精度符合要求为止。

得到纬度编码为 1011 1000 1100 0111 1001。

纬度范围 区间(0) 区间(1) 区间
(-90, 90) (-90, 0.0) (0.0, 90) 1
(0.0, 90) (0.0, 45.0) (45.0, 90) 0
(0.0, 45.0) (0.0, 22.5) (22.5, 45.0) 1
(22.5, 45.0) (22.5, 33.75) (33.75, 45.0) 1
(33.75, 45.0) (33.75, 39.375) (39.375, 45.0) 1
(39.375, 45.0) (39.375, 42.1875) (42.1875, 45.0) 0
(39.375, 42.1875) (39.375, 40.7812) (40.7812, 42.1875) 0
(39.375, 40.7812) (39.375, 40.0781) (40.0781, 40.7812) 0
(39.375, 40.0781) (39.375, 39.7265) (39.7265, 40.0781) 1
(39.7265, 40.0781) (39.375, 39.7265) (39.7265, 40.0781) 1
(39.9023, 40.0781) (39.9023, 39.9902) (39.9902, 40.0781) 0
(39.9023, 39.9902) (39.9023, 39.9462) (39.9462, 39.9902) 0
(39.9023, 39.9462) (39.9023, 39.9243) (39.9243, 39.9462) 0
(39.9023, 39.9243) (39.9023, 39.9133) (39.9133, 39.9243) 1
(39.9133, 39.9243) (39.9133, 39.9188) (39.9188, 39.9243) 1
(39.9188, 39.9243) (39.9188, 39.9215) (39.9215, 39.9243) 1

经度也用同样的算法,对 (-180, 180) 依次细分。

得到经度的编码为 1101 0010 1100 0100 0100。

经度范围 区间(0) 区间(1) 区间
(-180, 180) (-180, 0.0) (0.0, 180) 1
(0.0, 180) (0.0, 90.0) (90.0, 180) 1
(90.0, 180) (90.0, 135.0) (135.0, 180) 0
(90.0, 135.0) (90.0, 112.5) (112.5, 135.0) 1
(112.5, 135.0) (112.5, 123.75) (123.75, 135.0) 0
(112.5, 123.75) (112.5, 118.125) (118.125, 123.75) 0
(112.5, 118.125) (112.5, 115.312) (115.312, 118.125) 1
(115.312, 118.125) (115.312, 116.718) (116.718, 118.125) 0
(115.312, 116.718) (115.312, 116.015) (116.015, 116.718) 1
(116.015, 116.718) (116.015, 116.367) (116.367, 116.718) 1
(116.367, 116.718) (116.367, 116.542) (116.542, 116.718) 0
(116.367, 116.542) (116.367, 116.455) (116.455, 116.542) 0
(116.367, 116.455) (116.367, 116.411) (116.411, 116.455) 0
(116.367, 116.411) (116.367, 116.389) (116.389, 116.411) 1
(116.389, 116.411) (116.389, 116.400) (116.400, 116.411) 0
(116.389, 116.400) (116.389, 116.394) (116.394, 116.400) 0

接下来将经度和纬度的编码合并,奇数位是纬度,偶数位是经度。

得到编码 11100 11101 00100 01111 00000 01101 01011 00001。

最后,用0-9、b-z(去掉a, i, l, o)这32个字母进行base32编码。

得到 (39.92324, 116.3906) 的编码为 wx4g0ec1。

十进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
base32 0 1 2 3 4 5 6 7 8 9 b c d e f g
十进制 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
base32 h j k m n p q r s t u v w x y z

解码算法与编码算法相反,先进行base32解码,然后分离出经纬度。

最后根据二进制编码对经纬度范围进行细分即可。

程序处理

在经度和纬度入库的时候,数据库新增一个字段geohash,记录此点的geohash值。

在查询附近的时候,利用SQL中 like 'wx4g0e%' 进行查询。

查询出来的结果,根据距离大小进行排序。

geohash 字段可以使用索引。

//[PHP Code] 生成GeoHashCode编码

$longitude = ''; //经度

$latitude = '';  //纬度

$objGeoHash = new Geohash(); //文末有该类的下载方式

$strGeoHashCode = $objGeoHash->encode($latitude, $longitude);

//在采集数据的时候,这个值保存到数据中即可。
/**
 * [PHP Code] 根据经纬度计算两点之间的记录
 * @param $lat1 纬度1
 * @param $lng1 经度1
 * @param $lat2 纬度2
 * @param $lng2 经度2
 * @return float 单位(米)
 */
function getDistance($lat1, $lng1, $lat2, $lng2)
{
    //地球半径
    $R = 6378137;

    //将角度转为弧度
    $radLat1 = deg2rad($lat1);
    $radLat2 = deg2rad($lat2);
    $radLng1 = deg2rad($lng1);
    $radLng2 = deg2rad($lng2);

    //结果
    $s = acos(cos($radLat1) * cos($radLat2) * cos($radLng1 - $radLng2)
            + sin($radLat1) * sin($radLat2)) * $R;

    //精度
    $s = round($s * 10000)/10000;

    return  round($s);
}

备注

请了解,百度坐标与GPS坐标互转。

请了解,谷歌坐标与GPS坐标互转。

请了解,腾讯坐标与GPS坐标互转。

...

百度拾取坐标地址:

http://api.map.baidu.com/lbsapi/getpoint/index.html

GeoHash 编码精度为6位时,大概为附近1千米。

在纬度相等的情况下:

经度每隔0.00001度,距离相差约1米;

每隔0.0001度,距离相差约10米;

每隔0.001度,距离相差约100米;

每隔0.01度,距离相差约1000米;

每隔0.1度,距离相差约10000米。

在经度相等的情况下:

纬度每隔0.00001度,距离相差约1.1米;

每隔0.0001度,距离相差约11米;

每隔0.001度,距离相差约111米;

每隔0.01度,距离相差约1113米;

每隔0.1度,距离相差约11132米。

实际情况据需求而定,可在此基础上进行扩展。

Android开发浅谈附近地点搜索 转载https://www.codesocang.com/appboke/34239.html

技术博客阅读排行

最新文章