递归是一种较为抽象的数学逻辑,可以简单的理解为「程序调用自身的算法」。
维基百科对递归的解释是:
递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。
例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的。也可以理解为自我复制的过程。
"递"是传递的意思,"归"是归还的意思,先把一个方法一层层传递下去,然后传递到最后一层再把结果归还回来。
比方说我排队做核酸检测,前面有100个人,我想问下医务人员几点下班,于是问了我前面那兄弟,他又问了他前面的人,一个个传递下去,最终传递到了医务人员那里,回话说下午六点下班。这句话又往回传,最终到了我这里,我知道了医务人员六点下班。
这个过程就是一个递归过程,如果说"传话"本身是一种方法,那这整个传话过程就是在调用自身方法,最终获得了结果。
这和循环不一样,循环相当于给所有人都所有人都戴了耳机,然后有"中介"挨个去问你知道医务人员几点下班吗,等问到医务人员的时候,得到答案,“中介”告诉我六点下班。
实质上,递归就是把一个大问题不断拆解,像剥洋葱一样,最终拆解到最小层面,会返回解题结果。
用Python举一个最简单的递归函数例子,讲一讲什么是递归的应用。
我们经常会看到函数会调用自身来实现循环操作,比如求阶乘的函数。
整数n的阶乘即n*(n-1)*(n-2)*...*3*2*1
如下面5行Python代码,就能实现阶乘的计算
1 2 3 4 5 6 7 8 | deffact(n): '''n表示要求的数的阶乘''' ifn = = 1 : returnn n = n * fact(n - 1 ) returnn print (factorial( 5 )) |
输出:
120
很多人可能困惑这里面的计算逻辑,为什么fact函数中调用了自身,最终能得到结果。
我们可以按照数学逻辑进行推演:
整数n的阶乘是:fact(n) = n*(n-1)*...*3*2*1
整数n-1的阶乘是:fact(n-1) = (n-1)*(n-2)*...*3*2*1
所以可以推断fact(n) = n*fact(n-1)
这里是不是一种 fact方法可以为每个数所调用,最终调用到了n=1的时候,就返回结果n的阶乘。
大家看上图,递归函数会一层层往下调用,最终到n=1的时候,往上返回结果。
这就是递归的全过程,如果我们给递归下一个准确的定义,可以概括为以下3点:
1、至少有一个明确的递归结束条件;
2、给出递归终止时的处理办法;
3、每次进入更深一层递归时,问题规模(计算量)相比上次递归都应有所减少
以上面代码为例:
1 2 3 4 5 6 | deffactorial(n): '''n表示要求的数的阶乘''' ifn = = 1 : # 1、明确递归终止条件; returnn #2、递归终止时的处理办法 n = n * factorial(n - 1 ) #递去 returnn #归来 |
除了常见的阶乘案例,还有斐波那契数列,也是递归的经典用法。
斐波那契数列:1,1,2,3,5,8,13,21,34,55,89...
这个数列从第3项开始,每一项都等于前两项之和。
它以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n≥ 2,n∈ N*)
在Python中,我们可以使用递归函数的方式去实现斐波那契数列:
1 2 3 4 5 6 7 8 9 10 | # 1,1,2,3,5,8,13,21,34,55,试判断数列第12个数是哪个? deffab(n): '''n为斐波那契数列''' ifn< = 2 : v = 1 returnv v = fab(n - 1 ) + fab(n - 2 ) returnv print (fab( 12 )) |
使用数学方法进行推导:
其实以上两个递归的案例都可以用数学归纳法来解释,就是高中数学的知识。
一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;
(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
除了数学的解释,之前也看到有人对递归更加形象的解释:
1、我们已经完成了吗?如果完成了,返回结果。如果没有这样的终止条件,递归将会永远地继续下去。
2、如果没有,则简化问题,解决较容易的问题,并将结果组装成原始问题的解决办法。然后返回该解决办法。
哈哈,到这里大家是不是对递归有了一个更加深刻的认识。
如果还不清楚,没关系,这里还有更多的递归案例,用Python来实现,可以说非常简洁。
「最大公因数:」
1 2 3 4 5 | defgcd(m,n): ifn = = 0 : returnm else : returngcd(n,m % n) |
「从 1 到 n 的数字之和:」
1 2 3 4 5 6 | defsumnums(n): ifn = = 1 : return1 returnn + sumnums(n - 1 ) print (sumnums( 3 )) |
「字符串倒序:」
1 2 3 4 5 6 7 8 | defreverse(string): iflen(string) = = 0 : returnstring else : returnreverse(string[ 1 :]) + string[ 0 ] reverseme = '我是帅哥' print (reverse(reverseme)) |
「汉诺塔问题:」
1 2 3 4 5 6 7 8 9 10 11 | deftowerOfHanoi(numrings,from_pole,to_pole,aux_pole): ifnumrings = = 1 : print ( 'Movering1from' ,from_pole, 'poleto' ,to_pole, 'pole' ) return towerOfHanoi(numrings - 1 ,from_pole,aux_pole,to_pole) print ( 'Movering' ,numrings, 'from' ,from_pole, 'poleto' ,to_pole, 'pole' ) towerOfHanoi(numrings - 1 ,aux_pole,to_pole,from_pole) numrings = 2 towerOfHanoi(numrings, 'Left' , 'Right' , 'Middle' ) |
「二分法找有序列表指定值:」
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | data = [ 1 , 3 , 6 , 13 , 56 , 123 , 345 , 1024 , 3223 , 6688 ] defdichotomy( min , max ,d,n): ''' min表示有序列表头部索引 max表示有序列表尾部索引 d表示有序列表 n表示需要寻找的元素 ''' mid = ( min + max ) / / 2 ifmid = = 0 : return 'None' elifd[mid]<n: print ( '向右侧找!' ) returndichotomy(mid, max ,d,n) elifd[mid]>n: print ( '向左侧找!' ) returndichotomy( min ,mid,d,n) else : print ( '找到了%s' % d[mid]) return res = dichotomy( 0 , len (data),data, 222 ) print (res) |
有位大佬说过:To Iterate is Human, to Recurse, Divine.
中文译为:人理解迭代,神理解递归。
可见递归是非常神奇的算法,它的神奇之处在于它允许用户用有限的语句描述无限的对象。
当然人无完人,递归也是有缺点的,它一般效率较低,且会导致调用栈溢出。
因为递归不断调用自身函数,且产生大量变量,而栈空间的容量是有限的,循环太多就会效率低下,甚至导致调用栈溢出
以上就是Python实例详解递归算法的详细内容,更多关于Python递归算法的资料请关注源码搜藏网其它相关文章!
热门源码